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Embolism Diagnosis
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Abstract—Perfusion SPECT is a medical imaging modality
often used alongside other techniques to diagnose pulmonary
embolism. In this article, we developed a method that enables
the calculation of the ratio between the lung volume derived from
the SPECT examination and that obtained from a regular CT
scan. This value allows for the quantification of lung regions with
impaired perfusion. To compute this metric, it was necessary to
segment the lung images from both examinations. For the CT
images, we utilized an off-the-shelf algorithm based on U-Net
architecture, whereas for the SPECT images, a fixed threshold
determined empirically was applied. The subsequent step in-
volved calculating the volume based on the associated metadata
from the DICOM files. In a dataset comprising five patients (two
healthy and three diseased), the developed algorithm flawlessly
distinguished between the two groups. Thus, this method enables
the determination of a precise numerical metric quantifying the
severity of potential pulmonary embolism.

Index Terms—segmentation, pulmonary embolism, volume cal-
culation, SPECT, CT

I. INTRODUCTION
A. Context - Pulmonary Embolism

Pulmonary Embolism (PE) is reported to be one of the
most common cardiovascular diseases with the general annual
occurrence rate in range from 39-115 per 100 000 population.
It is caused by a blood clot that develops in a blood vessel
elsewhere in the body and travels to an artery in the lung,
forming a blockage [1], as presented on Fig. 1.

B. Diagnosis - SPECT

Lung V/Q (ventilation/perfusion) SPECT is one of an es-
tablished diagnostic imaging test for suspected PE. The idea
behind this test is to use radioactive tracer applied intravenous
(perfusion) or by inhalation (ventilation). Afterwards, a gamma
camera is used to detect the radiation emitted. The perfusion
scan may exclude PE, however if its abnormal, then a ventila-
tion scan should be considered for the interpretation (looking
for so-called V/Q mismatch - preserved ventilation and absent
perfusion, that implies potential PE). The regular CT is also
often performed to improve diagnosis sensitivity and specifity
[3]. All those results are then interpreted by a physician.
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Fig. 1. Pulmonary Embolism - artery blockage [2]

C. Contribution

In this research we developed an algorithm for automatic
comparison between Perfusion SPECT and regular CT exam-
inations. The key idea is to estimate lung volumes from those
two examinations, calculating the ratio Vp/Vor (Perfusion
lung volume to CT lung volume). The assumption is that
its low value may indicate there are some regions without
perfusion, thus patient may suffer from PE (similar like in
V/Q mismatch approach). This algorithm may enhance PE
diagnosis sensitivity and specificity. It also introduces a metric
quantifying the severity of potential PE calculated automati-
cally.

II. MATERIALS AND METHODS
A. Problem Formulation

Given patient’s imaging data from Perfusion SPECT and
Regular CT, our objective is to estimate lungs volume from
both examinations. With such calculated volumes, it will
be possible to calculate Vp/Ver ratio. This numeric value
describes how much of the lungs has present perfusion (refer-
encing to theoretical volume from CT scan). Near-one values



indicate fully preserved perfusion, while lower suggest absent
perfusion in some lung segments. It is worth noticing that
such method has some variability due to unpredictability of
radioactive tracer distribution and its permeability (situation,
when radioisotope penetrates through the lung tissue). How-
ever, our target is to find certain threshold that will allow us to
separate PE-diseased and healthy patients preserving highest
possible sensitivity and specificity.

B. Materials

The dataset included 5 patients, 3 of whom were diagnosed
with PE and 2 healthy controls. For every patient, the follow-
ing data was available:

o A series of CT scans in the lung window (axial view)
with various number of slices, each with a resolution of
512x512

e A series of Perfusion SPECT scans (axial view), com-
prising 128 slices, each with a resolution of 128x128

The examinations were conducted using the SIEMENS Symbia
T6 diagnostic equipment. This data was provided in DICOM
(Digital Imaging and Communications in Medicine) file format
with all required metadata, especially:

« Pixel Spacing and Slice Thickness - parameters describ-
ing physical voxel size

« Rescale Slope and Rescale Intercept - values to convert
stored pixel values into Hounsfield Units

+ Modality, Series Number, Instance Number - to cor-
rectly group and order scans

C. General approach

Perfusion/CT ratio calculation is multi-stage process with
following steps:

1) Acquisition and processing of DICOM files containing
both CT and SPECT imaging data along with their
associated metadata

2) Segmentation of SPECT images using a standardized
fixed threshold method

3) Preparation of CT images for segmentation, including
conversion of pixel values to HU

All those steps were taken using Python programming lan-
guage with necessary external libraries.

D. SPECT segmentation

The segmentation of SPECT images creates significant
challenges compared to CT segmentation. While CT images
provide clear anatomical boundaries based on tissue density
differences (and can be clearly segmented thanks to Hounsfield
Units), SPECT images represent data with gradual transitions,
often grainy and contain regions with low or absent uptake
that are still anatomically part of the organ.

Our approach to SPECT segmentation involves the follow-
ing steps:

o Data Preparation: First, DICOM files containing SPECT

imaging data are loaded. Perfusion SPECT images are
processed.

o Image Normalization: Each image volume is normalized
by dividing all voxel values by the maximum intensity
value in the respective dataset. This standardizes the
intensity range to [0,1] and enables consistent threshold
application across different scans.

o Threshold-based Segmentation: A fixed threshold method
is applied to the normalized images. After analysis of the
image histograms and produced results across multiple
samples, a threshold value of 0.1 (10% of maximum in-
tensity) was selected. This threshold represents a compro-
mise between including low-uptake regions and excluding
background noise of the image.

The selection of 0.1 as the threshold was not arbitrary,
but was based on our empirical tests. Note that this is a
limitation of our approach, as no single threshold value can
optimally segment all SPECT images because of the variability
in the distribution of radioactive pharmaceuticals. Segmenta-
tion result is presented on Fig. 2. Despite it may look like
threshold was set too low, this inaccuracy does not affect our
methodology, since it is calculated in the same way for every
patient.

SPECT Segmented image
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Fig. 2. SPECT slice segmentation

E. Alternative SPECT segmentation

During our analysis of the segmentation problem, we con-
ducted a literature review to identify key existing approaches.
The most notable methods are outlined in the following
summary.

o Active Shape Models (ASM): ASM trained on reference
CT lung shapes [4] can be applied to SPECT images. This
method incorporates anatomical knowledge to overcome
the limitations of intensity-based segmentation, especially
in regions with perfusion defects.

e CNN-based Segmentation: More recently, some re-
searchers demonstrated the effectiveness of convolutional
neural networks for automated segmentation of the the
lungs, liver, and tumors from SPECT/CT images [5].

« Registration-Based Methods: Several researchers [6] have
used co-registration of CT and SPECT images, using
the anatomical information from CT to guide SPECT
segmentation.

Although our fixed threshold method (10% of minimum

intensity) used in this study is adequate for research purposes
it has significant limitations. Our approach does not adapt to



the the specific characteristics of individual images, which
becomes problematic with variations in radio pharmaceutical
uptake, patient physiology, and acquisition parameters. For fu-
ture implementations, more sophisticated segmentation meth-
ods would be recommended, particularly those incorporating
anatomical knowledge (such as active shape models) or deep
learning approaches capable of capturing complex patterns
from training data.

It is also worth mentioning, that data distribution in SPECT
examination does not allow finding any reliable threshold
with standard methods like ie. Otsu’s thresholding. Looking
at histogram presented at Fig. 3 (logarithmic scale), we can
see that the data distribution have continous characteristics so
it isn’t possible to simply extract two classes (background and
tissue).
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Fig. 3. SPECT pixel value distribution

F. CT segmentation

All dicom files were processed using pydicom library. The
imaging data was represented as a 3D numpy array. The first
step was to transpose pixel values into Hounsfield Units (which
is required by the segmentation algorithm). It can be done with
associated dicom metadata using the formula for each pixel
value pxyq;:

HU = RescaleSlope - pxyq + Rescalelntercept (1)

The result of this operation is again 3D numpy array in HU
representation.

Such prepared volume was then segmented using lungmask
[7] library. It implements an U-Net based deep learning
approach to lung segmentation specifically designed for CT
images. This model was trained on a diverse dataset of chest
CT scans and has been demonstrated to be robust across
various scanning protocols and pathologies. The segmentation
process automatically identifies and labels voxels as either
lung tissue or background, producing a binary mask of the
same dimensions as the input volume. The final output was a
3D binary mask where voxels with value 1 represent lung
tissue and O represent non-lung regions. Fig. 4 represents
segmentation result for a one slice.

Regular CT Segmented image

Fig. 4. CT slice segmentation

G. Volume and ratio calculation

Having segmented both volumes (SPECT and CT) we were
able to calculate estimated lung volumes from both scans.
To begin with, we needed to obtain real pixel dimensions
from associated dicom metadata. The three dimensions can be
found in Pixel Spacing (2-element touple) and Slice Thickness
(single value). Important notice is that the value of one
dimension of voxel is equal to Slice Thickness due to the
fact Spacing Between Slices is 0 in our case. The next step
was to simply count 1’s voxels in both segmented scans and
multiply it by the corresponding real voxel volumes.

III. RESULTS AND DISCUSSION

A. Output

The obtained results are presented in the Tab I, where ‘D’
stands for diseased and 'H’ for healthy patients. It contains
lung volumes (in liters) from CT and SPECT examinations
and the calculated ratio Vp/Vor.

As expected, for healthy patients, calculated volume ratio
is greater than for diseased ones. The algorithm was able to
fully separate diseased and healthy controls. The difference
between group boundaries (L g7ymin — 1 Dmaz) 1S €qual to 0.174.
The difference between group mean values ({tHavg — HDavg)
is equal to 0.281.

The next step is to determine the best value for threshold.
The most basic approach would be to define its value as
T = Wimintilbmes _ middle point between boundary values.
For the provided data, the threshold value would be 0.782.
However, more data are required to find a reliable threshold.
In case two classes overlaps, another method, that minimizes
misclassification (number of controls classified incorrectly), is
needed.

TABLE I
RATIO RESULT TABLE
Patient CT SPECT | Ratio
D1 4.204 2918 0.694
D2 5.496 2.954 0.537
D3 3.110 2.162 0.695
H1 3.347 3.271 0.977
H2 2.407 2.091 0.869




B. Visualisation

All the visualisations are prepared using Slicer software.
The pale purple model depicted in Fig. 5 represents the CT-
generated lung reconstruction, while the overlaid gray model
illustrates the SPECT data. This example, showcased using
a healthy subject, demonstrates congruence between the two
imaging modalities. The near-identical morphology of both
models highlights the precision of the imaging techniques
when applied to normal lung anatomy.

Fig. 5. 3D models of segmented SPECT and CT overlaying

Fig. 6 presents an alternative visualization of the same
models. In this representation, the CT data was segmented
using the MONAI Auto3DSeg model, complemented by
SPECT data (not segmented). The SPECT information appears
as a dark, luminous glow around the segmented structure, with
notable protrusions visible in certain regions. This visualiza-
tion approach offers a different perspective on the relationship
between the anatomical (CT) and functional (SPECT) imaging
data.

Fig. 6. 3D models reconstructed with MONAI

C. Performance tests

We consider the execution time of the proposed algorithm
a critical factor, particularly because PE is a medical emer-
gency that requires rapid diagnosis. Moreover, many hospitals
operate with legacy hardware infrastructure.

With the exception of the CT segmentation process, the
execution time for all other steps of the algorithm is negligible.
In this section, we focus on measuring the time required to
complete the CT segmentation step. The benchmark setup is
presented below:

o AMD Ryzen 5 5600 6-Core Processor 3.50 GHz
e 32GB RAM

o Windows 11 x64

o No GPU acceleration

The tests involved segmenting five CT examinations, averaging
approximately 140 slices each. The average segmentation time
was 48s. While GPU acceleration could significantly reduce
this time, it is not universally supported across all hardware
configurations.

IV. CONCLUSION

Although results are really promising, more data are re-
quired for a more reliable algorithm evaluation. It would be
useful to establish fundamental metrics such as intra-class
variance, sensitivity, specificity (in case classes overlaps). Also
more data would allow to determine more reliable threshold
value. What is more, it would be beneficial to introduce
additional thresholds that would allow to divide patient into
groups based on the eventual PE severity (ie. acute, low, none).

Future improvements might involve implementing more
accurate SPECT segmentation algorithm to achieve more
reliable results. It would also be beneficial to optimize the CT
segmentation method, as it is currently quite time-consuming.
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